Telegram Group & Telegram Channel
AutoML-Zero [2020] - когда оракул помогает поиску.

Можно ли с нуля и без априорных знаний сгенерировать код нейронной сети? Оказывается, в целом можно.

Применяем эволюционный поиск программ:
1) Задаём базовую структуру программы: нам нужно обучить 3 куска кода - для инициализации, для шага обучения и применения. То, как они используется, заранее задано, там простой train-loop. То есть одна программа это реализация трёх функций.
2) Определяем набор операций, которые можно использовать - берём базовые математические операции над скалярами, матрицами и векторами. И добавляем возможность самому инициализировать новые такие объекты.
3) Поддерживаем "популяцию" из N программ
4) В процессе оптимизации берём программы и применяем к ним мутации (случайно добавляем/удаляем/изменяем команду или другие случайные изменения)
5) Оцениваем новые программы, прогоняя процесс обучения, оставляем удачные варианты в популяции.
6) Прогоняем триллион программ в рамках оптимизации и готово!

Важно заметить, что несмотря на случайную природу мутаций, AutoML-Zero ищет программу быстрее (экспоненциально), чем нашёл бы простой случайный поиск программ. Ключом тут является способность эволюционного алгоритма закреплять локальный успех.

Но каждый локальный успех по отдельности это миллиарды экспериментов - например, понадобилось 10^10 программ, чтобы собрать линейную модель. Поэтому такой подход имеет узкие рамки для использования.

Но зато всё это крайне весело.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/38
Create:
Last Update:

AutoML-Zero [2020] - когда оракул помогает поиску.

Можно ли с нуля и без априорных знаний сгенерировать код нейронной сети? Оказывается, в целом можно.

Применяем эволюционный поиск программ:
1) Задаём базовую структуру программы: нам нужно обучить 3 куска кода - для инициализации, для шага обучения и применения. То, как они используется, заранее задано, там простой train-loop. То есть одна программа это реализация трёх функций.
2) Определяем набор операций, которые можно использовать - берём базовые математические операции над скалярами, матрицами и векторами. И добавляем возможность самому инициализировать новые такие объекты.
3) Поддерживаем "популяцию" из N программ
4) В процессе оптимизации берём программы и применяем к ним мутации (случайно добавляем/удаляем/изменяем команду или другие случайные изменения)
5) Оцениваем новые программы, прогоняя процесс обучения, оставляем удачные варианты в популяции.
6) Прогоняем триллион программ в рамках оптимизации и готово!

Важно заметить, что несмотря на случайную природу мутаций, AutoML-Zero ищет программу быстрее (экспоненциально), чем нашёл бы простой случайный поиск программ. Ключом тут является способность эволюционного алгоритма закреплять локальный успех.

Но каждый локальный успех по отдельности это миллиарды экспериментов - например, понадобилось 10^10 программ, чтобы собрать линейную модель. Поэтому такой подход имеет узкие рамки для использования.

Но зато всё это крайне весело.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/38

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

Knowledge Accumulator from br


Telegram Knowledge Accumulator
FROM USA